
On the Effectiveness of Traffic Analysis Against
Anonymity Networks Using Flow Records

Sambuddho Chakravarty,∗ Marco V. Barbera,† Georgios Portokalidis,‡

Michalis Polychronakis,∗ Angelos D. Keromytis∗

∗Columbia University, New York, NY, USA †Sapienza Universita Di Roma, Rome, Italy
{sc2516,mikepo,angelos}@cs.columbia.edu barbera@di.uniroma1.it

‡Stevens Institute of Technology, Hoboken, NJ, USA
gportoka@stevens.edu

Abstract—Low-latency anonymous communication networks,
such as Tor, are geared towards web browsing, instant messaging,
and other semi-interactive applications. To achieve acceptable
quality of service, these systems attempt to preserve packet
interarrival characteristics, such as inter-packet delay. Conse-
quently, a powerful adversary can mount traffic analysis attacks
by observing similar traffic patterns at various points of the
network, linking together otherwise unrelated network connec-
tions. Previous research has shown that having access to a few
Internet exchange points is enough for monitoring a significant
percentage of the network paths from Tor nodes to destination
servers. Although the capacity of current networks makes packet-
level monitoring at such a scale quite challenging, adversaries
could potentially use less accurate but readily available traffic
monitoring functionality, such as Cisco’s NetFlow, to mount large-
scale traffic analysis attacks.

In this paper, we assess the feasibility and effectiveness of
practical traffic analysis attacks against the Tor network using
NetFlow data. We present an active traffic analysis method based
on deliberately perturbing the characteristics of user traffic at the
server side, and observing a similar perturbation at the client side
through statistical correlation. We evaluate the accuracy of our
method using both in-lab testing, as well as data gathered from a
public Tor relay serving hundreds of users. Our method revealed
the actual sources of anonymous traffic with 100% accuracy for
the in-lab tests, and achieved an overall accuracy of about 81.4%
for the real-world experiments, with an average false positive rate
of 6.4%.

I. INTRODUCTION

Anonymous communication networks hide the actual
source (or destination) address of Internet traffic, preventing
the server (or client) and other entities along the network
from determining the actual identities of the communicating
parties. There are two broad types of anonymity-preserving
systems: low latency and high latency. Low-latency systems
are designed primarily for semi-interactive applications, such
as web browsing and instant messaging. Among others [1], [2],
Tor [3] is probably the most widely used proxy-based low-
latency anonymous communication network. In Tor, clients
establish circuits through a chosen set of proxies, beginning
with an entry node and reaching the final destination through
an exit node.

To offer acceptable quality of service, a distinctive charac-
teristic of these systems is that they attempt to maintain packet
inter-arrival times. Unfortunately, this makes them vulnerable

to traffic analysis attacks [4]–[12], whereby an adversary with
access to traffic entering and leaving entry and exit nodes can
correlate seemingly unrelated traffic flows and reveal the actual
communicating endpoints. High-latency systems, on the other
hand, are designed for delay-tolerant applications such as e-
mail, and introduce artificial delay to the forwarded packets so
as to defend against traffic analysis attacks.

As Tor nodes are scattered around the globe, and the nodes
of circuits are selected at random, mounting a traffic analysis
attack in practice would require a powerful adversary with
the ability to monitor traffic at a multitude of autonomous
systems (AS). Murdoch and Zieliński, however, showed that
monitoring traffic at a few major Internet exchange (IX) points
could enable traffic analysis attacks to a significant part of the
Tor network [13]. Furthermore, Feamster et al. [14] and later
Edman et al. [15] showed that even a single AS may observe
a large fraction of entry and exit node traffic—a single AS
could monitor over 39% of randomly generated Tor circuits.

Packet-level traffic monitoring at such a scale would re-
quire the installation of passive monitoring sensors capable
of processing tens or hundreds of Gbit/s traffic. Although
not impossible, setting up a passive monitoring infrastructure
of this scale is a challenging endeavor in terms of cost,
logistics, and effort. An alternative, more attractive option for
adversaries would be to use the readily available (albeit less
accurate) traffic monitoring functionality built into the routers
of major IXs and ASs, such as Cisco’s NetFlow. Compared
to packet-level traffic monitoring, the flow-level aggregation
of the measured traffic properties and the use of aggressive
sampling make NetFlow data less than ideal for traffic analysis
attacks. Murdoch and Zieliński showed through simulation
that traffic analysis using sampled Netflow data is possible,
provided there are adequate samples. Still, there have been
no prior efforts to explore the various practical aspects of
mounting traffic analysis attacks using NetFlow data.

As a step towards filling this gap, in this paper we study
the feasibility and effectiveness of traffic analysis attacks using
NetFlow data, and present a practical active traffic analysis
attack against Tor. Our approach is based on identifying
pattern similarities in the traffic flows entering and leaving
the Tor network using statistical correlation. To alleviate the
uncertainty due to the coarse-grained nature of NetFlow data,
our attack relies on a server under the control of the adversary
that introduces deterministic perturbations to the traffic of

anonymous visitors. Such a colluding adversary is similar
to the one described in [16]. Among all entry-node-to-client
flows, the actual victim flow can be distinguished due to its
high correlation with the respective server-to-exit-node, as both
carry the induced traffic perturbation pattern.

We assume a powerful adversary, capable enough of ob-
serving traffic entering and leaving the Tor network nodes
at various points. Such an adversary might be a powerful
nations state or a group of colluding nation states that can
collaborate to monitor network entering and leaving various
ASes simultaneously. For the sake of our experiments, and for
gathering flow information for traffic going to the entry node,
we hosted a public Tor entry node within our institution.

Alternately, it is not even essential to be a global adversary
to launch such traffic analysis attacks. A powerful, yet non-
global adversary could use traffic analysis methods such as [6],
[8], [17], [18] to determine the various relays participating in
a Tor circuit and directly monitor the traffic entering the entry
node of the victim connection.

We evaluated the effectiveness of our traffic analysis at-
tack first in an in-lab environment, and later using a set-up
involving real Tor network relays. For our research, we used
a combination of flow data gathered from open source tools
such as ipt_netflow [19] and flowtools [20], as well
as the flow records from our institutional Cisco router. In
our controlled in-lab experiments, we relied solely on data
from open source tools, while in the experiments involving
our public Tor relay, used data both from open source tools
as well as from our institutional edge router. In the controlled
in-lab environment we had 100% success rate in determining
the source of anonymous flows. When evaluating our attack
with traffic going through the public Tor relay, we were able
to detect the source in 81.4% cases. We observed about 12.2%
false negatives and 6.4% false positives in our measurements.
Correlation is a sensitive metric that varies considerably due
to small variation in input values. We thus couple correlation
with heuristics to filter out flows which are very unlikely to be
the victim. The false negatives were a function of the filtering
threshold and low correlation co-efficient (< 0.2), while the
false positives were primarily due to our approximation based
to method to make up for lack of input samples which led
to loss of information and subsequent inaccurate correlation
co-efficient.

Briefly, the main contributions of this research are as
follows:

• An active practical traffic analysis attack that relies
on performing statical correlation on Netflow data to
reveal source of anonymous traffic.

• An empirical evaluation of the feasibility and accuracy
of such traffic analysis attack first in an in-lab set-up
and later in a set-up involving a public Tor relay.

• A method to perform our correlation based traffic anal-
ysis even in the presence of sparse flow data, which
can help accurately reveal the source of anonymous
traffic in 80% of the cases (with 14% false negatives
and 6% false positives).

1

Tor client

Directory
Service(s)

C
li

e
n

t
co

m
m

u
n

ic
at

e
s

 t
o

D

ir
e

ct
o

ry
 S

e
rv

e
r

Server

Tor circuit establishment via TLS
encrypted link

Exit Node
connects
to requested
service

Tor Node

Unencrypted Link
TLS Encrypted Link

Entry Node

Middleman
Exit Node

2

2

2

3

Fig. 1. Basic steps for communicating through Tor. The client obtains a list
of the available Tor relays from a directory service 1©, establishes a circuit
using multiple Tor nodes 2©, and then starts forwarding its traffic through the
newly created circuit 3©.

II. BACKGROUND AND RELATED WORK

A. The Tor Anonymity Network

Tor [3] is the most widely used low-latency anonymous
communication network, with over half a million users as of
July 2013 [21]. Tor safeguards the anonymity of Internet users
by relaying user-generated TCP streams through a network
of overlay nodes run by volunteers. It can be used for both
initiator and responder anonymity. That is, it can hide the
identity (IP address) of the initiator of a connection from the
destination and vice-versa through the use of hidden services.

The Tor overlay network consists of volunteer-run proxies
distributed across the globe, known as Onion Routers (ORs).
User traffic is relayed through circuits, which are formed using
semi-persistent SSL connections between different Tor nodes.
Commonly, a Tor circuit consists of three nodes: the first where
the client connects is the entry node, the next is the middleman,
and the last that connects to the destination is the exit node.

Figure 1 briefly presents the basic steps for the creation
of a new Tor circuit consisting of three onion routers. To
establish a circuit, a client first consults Tor’s service directory,
which is know beforehand, to fetch a list of Tor relays. It
then selects all the nodes that are going to compose the
circuit using the Tor relay selection algorithm [22]. Next, the
client negotiates shared secret keys with the circuit’s relays.
Messages exchanged over the circuit are encapsulated into
fixed-size (512-byte) packets, called cells, and encrypted in
multiple layers, using the negotiated keys. Encryption starts
with key established with the exit node and ends with the
key of the entry node. The process is reversed as the cell
traverses the circuit, with every node “peeling off” one layer
of encryption and forwarding the cell to the next node, until it
reaches the exit node that establishes a TCP connection with
the destination and transmits the client’s original data.

2

B. Network Flow Monitoring

NetFlow is a network protocol designed for collecting and
monitoring network traffic. NetFlow groups exchanged data
in network flows, which can correspond to TCP connections
or other IP packets sharing common characteristics, such
UDP packets sharing source and destination IP addresses, port
numbers, and other information (see protocol specification [23]
for further details).

Sample flow records are listed in Table I. The columns
labeled Start and End denote flow start and end times.
Sif and Dif represent the SNMP source and destina-
tion interface ifIndex respectively. SrcIPaddress and
DstIPaddress denote source and destination IP addresses,
and, similarly, SrcP and DstP denote port numbers. P is the
protocol (6 represents TCP and 17 represents UDP). Pkts
and Octets represent the number of packets, and bytes
respectively, observed for this flow in the particular time frame.
Fl denotes the TCP flags present in the TCP header.

Most Cisco routers these days include networking monitor
capabilities using NetFlow. Other major router and networking
device manufacturers have their own, similar protocols, like
Juniper jflow [24], Huawei Netstream [25], and Alcatel Lucent
sflow [26]. There are also various open source implementa-
tions for collecting network statistics using NetFlow, such as
ipt_netflow [19] and fprobe [27].

The way these systems work is by creating a NetFlow
record in memory and updating it as more packets are
forwarded through the router. Each flow is associated with
two timers, namely the active and inactive timers. These are
specified in seconds, within the router configuration. If data
has been recorded for a flow within the recent active timeout
period, then it classified as an active flow. Records of active
flow is aged out to persistent storage after every expiration of
the active timeout and fresh record entries are instantiated in
the flow cache. On the other hand, a flow that hasn’t recorded
activity within the recent inactive timeout period, is labeled
as an inactive flow. Following the expiration of the inactive
timeout, the flow record is moved to persistent storage and
new records, corresponding to the flow, are instantiated. The
records are flushed-out to persistent storage, so they can be
processed to produce higher-level statistics, generate traffic
reports, and so on, based on their age, or when a flow is
terminated. For instance, when a TCP FIN packet has been
observed for a TCP connection. Administrators can modify
various parameters [28] to customize the process, like setting
timeouts for controlling when to push active and inactive flow
records to persistent storage, and enabling packet sampling.
As Internet speeds have grown, vendors introduced packet
sampling to minimize the overhead of network monitoring in
packet forwarding, in exchange for accuracy in the reported
flow records.

C. Traffic Analysis

Traffic analysis attacks have been extensively studied over
the past decade [5], [43]. Murdoch and Danezis [6] developed
the first practical traffic analysis attack against Tor. They
proposed a technique to determine the Tor relays involved
in a circuit. The method involved a corrupt server, accessed
by the victim client, and corrupt Tor node that can form

one-hop circuits with arbitrary legitimate nodes. The server
modulates the data being sent back to the client, while the
corrupt Tor node is used to measure delay between itself and
Tor nodes. The correlation between the perturbations in the
traffic exchanged with a Tor node, and the server stream helped
identify the relays involved in a particular circuit.

Hopper et al. [7] used this method, along with one-way
circuit latency, and the Vivaldi network coordinate system to
determine the possible source of anonymous traffic. However,
in 2009, it was demonstrated by Evans et. al [8] that the traffic
analysis attack proposed by Murdoch and Danezis was more
applicable due to the large number of Tor relays, the large
volume of Tor traffic, low end-to-end quality of service and
possible network bottleneck locations between the adversaries
vantage point and the victim relays. They proposed a method
to amplify the network traffic by using circuits that repeatedly
used the same relays and aided in easier identification of the
relays.

Later, we proposed methods for performing traffic analysis
using remote network bandwidth estimation tools, to identify
the Tor relays and routers involved in Tor circuits [16], [18].
Our method assumed that the adversary is in a position to
perturb the victim traffic by colluding with the server and
is in control of various network vantage points, from where
he can observe variations in network bandwidth. Due to the
network traffic perturbations induced by the server, bandwidth
monitoring could reveal the relays part of the circuit being
attack, eventually leading to the source. Our efforts achieved
modest success in confirming the identity of the source of
anonymous traffic. On average, about 42% of the connections
between victim Tor clients and entry nodes preserved the traffic
fluctuations induced by the server.

More recently, Mittal et. al. [17], demonstrated a somewhat
modified version of the Murdoch and Danezis attack, which
rather than using variation in one-way delay, relied on band-
width variations to determine if two clients were using the
same set of Tor relays for their circuits.

In general, traffic analysis attacks belong to a general class
of side-channel attacks that try to correlate changes in anony-
mous communication patterns to changes in various network
and system parameters such as network traffic throughput, one-
way or round trip latency, temperature variation of network
equipment and various other parameters which can indirectly
reveal variation in network and system operation parameters.
These correlated patterns are used to link network peers
which are part of an anonymous communication session. For
example, previous work [9], [30] demonstrated how variation
in anonymous traffic leads to variation in CPU temperature
and, hence, the system clock. TCP clock skew, which can
be remotely determined through TCP timestamp options, can
easily reveal this system clock drift.

Traffic analysis (and related) side-channel attacks have not
only been studied in the context of anonymity networks but
in the wider context of various other kinds of secure com-
munication systems such as revealing contents of encrypted
traffic [31] and finding recently visited websites [32]. Further
Wang et. al. [33], [34] show how traffic analysis can been used
to reveal anonymously communicating VoIP peers.

Traffic Analysis by Internet Exchange Level Adversaries

3

Start End Sif SrcIPaddress SrcP DIf DstIPaddress DstP P Fl Pkts Octets
0606.23:59:06.616 0606.23:59:36.660 65535 192.168.0.20 50000 2 213.163.65.50 54089 6 0 3 156
0606.23:59:06.616 0606.23:59:36.660 2 213.163.65.50 54089 65535 192.168.0.20 50000 6 0 3 1914
0606.23:59:29.420 0606.23:59:30.572 2 71.58.107.145 42259 65535 192.168.0.20 50000 6 2 10 3961
0606.23:59:29.420 0606.23:59:30.612 65535 192.168.0.20 50000 2 71.58.107.145 42259 6 2 9 3578
0606.23:59:33.396 0606.23:59:33.396 65535 127.0.0.1 55171 1 127.0.0.1 10002 17 0 1 1492

TABLE I. SAMPLE NETFLOW RECORDS SHOWING VARIOUS FIELDS

In 2007, Murdoch et al. [13] proposed using NetFlow data
from routers in Internet Exchanges to perform traffic analysis
attacks against traffic entering and leaving the Tor network.
They presented two novel contributions. First, the showed
that there is a small number of Internet Exchanges which
can potentially monitor large fraction of Tor traffic. Second,
these Internet Exchanges could use network sub-systems built
into existing network infrastructure, such as NetFlow found in
Cisco routers, to launch traffic analysis attacks. They proposed
a model of the traffic and the attack to which they input the
NetFlow traffic gathered from monitoring a Tor relay for a
short duration and described, through simulations, how varying
the number of flows, the data transmission rate, and end-to-
end delays may affect the accuracy in determining the source
of the anonymous traffic.

However, their efforts did not explore the feasibility and
effectiveness of using a sub-system like NetFlow to determine
the source of anonymous traffic. Is using NetFlow practical?
Can an adversary accurately de-anonymize a Tor client using
solely NetFlow data? Our work attempts to answer these
questions. We present a methodology for performing traffic
analysis using NetFlow data alone, and experimentally evaluate
its accuracy in identifying the source of anonymous traffic. We
developed an active attack that involves modulating victim traf-
fic at a colluding server and observing its effects in the network
using NetFlow. We rely on statistical correlation (Pearson’s
correlation coefficient) to identify the closest matching flow.
We experimentally evaluated the effectiveness of our method,
discuss how certain limitations of the NetFlow system can
affect detection accuracy, and try to compensate for the same.

III. APPROACH

A. Threat Model

In this work, we mainly focus on the problem of evaluating
the effectiveness of using NetFlow data to perform practical
traffic analysis attacks for identifying the source of anonymous
communication. In our attack model, we assume that the victim
is lured to access a particular server through Tor, while the
adversary collects NetFlow data corresponding to the traffic
between the exit node and the server, as well as between Tor
clients and the victim’s entry node. The adversary has control
of the particular server (and potentially many others, which
victims may visit), and thus knows which exit node the victim
traffic originates from.

We assume a powerful-enough adversary that can monitor
traffic at various network locations, allowing the inspection of
Tor traffic towards a significant number of entry nodes [13]–
[15]. The adversary could identify important ASes and their
topological relationships using methods similar to those pre-
sented by Schuchard et al. [35]. Alternatively, the adversary
could use throughput fingerprinting to identify the entry node

of a particular victim circuit [8], [17], [18]. The challenge for
the adversary is to determine the real identity of the anonymous
client that corresponds to a connection seen at the server, using
solely NetFlow data from the vantage points of i) the exit
node towards the server, and ii) the various clients towards
entry nodes. Having determined the identity of the entry node
involved in the victim anonymous connection, the adversary
needs to only find the entry to client flow that uses this entry
node and which correlates closely to the server to exit flow.

B. Attack Approach

The main objective of our attack is to determine the source
of anonymous connection arriving to a server using NetFlow
data, available easily available from network routers. We
present an active attack strategy. In our strategy the adversary
uses statistical correlation over the server to exit and entry to
client traffic to find similar traffic patterns. However, in traffic
analysis attacks against Tor, that involves correlation of the
server to exit traffic with hundreds (or even thousands) of other
entry to client traffic flows, it could potentially be difficult
to correctly find the flow carrying our victim traffic. Large
fraction of Tor traffic is mostly due to web browsing [36]. The
human effort of web browsing results in a semi-continuous
network process, due to momentary pauses between visiting
one web-page and then moving on to the next one. This
often generates to inadequate sustained network traffic for
long durations. We thus assume that victim downloads a large
file from the server, for the duration of the attack, so as to
generate sustained traffic for a considerably long duration of
time (atleast 5 – 7 minutes). In practice there are several ways
to enforce the victim to download a file from the server. An
adversary could force a web-server to send out contents such a
web page containing iframes containing pages with multimedia
content or flash video which would downloaded when the
victim access the page. Other possible ways to achieve this is
by colluding with popular web services to host decoy pirated
multimedia files such as pirated copies of latest movies. A
victim might be tempted to download such files. Moreover, our
intuition here is that, injecting a specific fingerprinting pattern,
as done in [16]–[18], makes identification of the victim traffic
easier by causing it to be prominent compared to contending
traffic flows. In our attack model, the victim client downloads
a file from the server, that colludes with the adversary and is
in a position to inject a traffic pattern by perturbing the TCP
connection it sees arising from an exit node. Thereafter, the
adversary uses NetFlow data to obtain traffic statistics from
the server to exit node and correlates it individually to each of
the entry node to client traffic statistics so as to find the flow
which carries the injected fingerprint (the one that is likely to
show high correlation to the server to exit traffic statistics).

In our attack model, the adversary access NetFlow data,
corresponding to the server to exit and entry node to client

4

traffic, and correlates network statistics to find similar patterns,
thereby linking otherwise unrelated network connections. The
client connects to the server, that colludes with the adversary
and downloads a relatively large file, which takes a while to
complete. This generates sustained traffic for a relatively large
duration and thus records adequate flow samples to compute
the correlation coefficient1. In our experiments the server
hosted a file of 100 Mbytes so that the victim client (assuming
the client achieves a maximum throughput of 1 Mbit/s, which
is relatively on the higher side for Tor standards), takes over
an hour to download it completely. This was long enough
for the server to perturb the traffic several times and record
enough samples to perform statistical correlation. However, as
described ahead in Section IV, even the longest experiment
were much shorter than an hour.

While the client downloads the file from the server, the
server (in collusion with the adversary) injects a repeating traf-
fic pattern in the TCP connection, that it observes as originat-
ing from the exit node. In our experiments, this was achieved
by capping the connection throughput to a particular bandwidth
value for several seconds and then switching to another one.
We achieved this using Linux Traffic Controller [37], a Linux
kernel based traffic shaping and conditioning framework. In
our experiments, the adversary injected two different kinds
of traffic patterns. The first one involves the server injecting
a simple “square wave” like pattern, achieved by repeatedly
switching the victim’s traffic pattern between two bandwidth
values. The other was a more complex “step” like pattern,
that was achieved by the server switching repeatedly between
several pre-calculated bandwidth values. For the sake of our
experiments we often chose these values after some initial
measurements to see what bandwidth values the victim Tor
clients achieved.

After the download proceeds for a while, the victim con-
nection is terminated and the traffic pattern injection is halted.
Thereafter, the adversary obtains flow records from the server,
corresponding to the recently computed server to exit traffic
and from the entry node (or the router that had access to
traffic going and from the entry node), corresponding to the
clients that were using the entry node during the period when
the client was communicating with the server. As described
ahead in the Section IV, our experiments consisted of two
stages. The first stage consisted of testing our traffic analysis
attack in an in-lab environment to evaluate its accuracy in the
absence network congestion and system disturbance. In these
experiments the flow records were generated and captured
using the open source packages of ipt_netflow [19] and
flow-tools [20] respectively.

From the flows, the adversary obtains the traffic statistics
corresponding to the sever to exit traffic and all the clients
that were using the entry node. In case of NetFlow data, the
only statistics one can obtain from the records is the bytes
transferred for each time interval, based on flow start and end
times. The adversary computes the correlation for the bytes
transferred between the server to exit node and each of the
individual clients that used the entry node. The correlation
coefficient corresponding to the victim client is expected to be
the highest, as it is actually the server to exit traffic carrying the

1It is generally believed in statistics literature that there should be atleast
10 sample points for reliably computing the correlation coefficient

injected pattern. The adversary thus selects the client whose
traffic statistics closely correlate to the server to exit traffic.

The second stage consisted of testing our attack with data
from a public Tor relay, serving hundreds of other Tor clients.
In these experiments the, the flow records for server to exit
traffic were generated and captured using the aforementioned
open source packages. The flows corresponding to the entry
node to client traffic were however generated first using the
open source packages, and later from our institutional edge
router.

This approached works wells, as it is, when the data was
generated and captured from only using open source tools,
as the records are of equal durations and evenly spaced. The
flow interval lengths are determined by the active and inactive
timers (as mentioned in Section II. In our set-up, we configured
both of these to be 5 seconds. This provided us with a more
or less continuous view of the network traffic and that could
directly be used to compute the correlation coefficient between
the server to exit and entry to client traffic statistics.

This naı̈ve approach however didn’t work when when using
data from the institutional edge router. In our institutional edge
router the active and inactive timers were configured to be 60
and 15 seconds respectively. We thus configured the server’s
NetFlow generation packages with the same parameters. How-
ever, from some initial experiments it became evident that the
NetFlow data from the institutional router was often much
sparse, compared to that obtained from open source tools.
While the flow records derived from the server (that generated
the data using the open source tools) were uniformly long and
evenly spaced, such was not the case with data obtained from
the network router.

A direct one-to-one comparison between the server to
exit flow records, obtained from the open source tools and
the entry to client records, did not yield accurate correlation
coefficient, as they were not correctly aligned in time. This
misalignment was not due to unsynchronized clocks. This was
due primarily due to information aggregation by the router.
Often data corresponding to multiple intervals were combined
together into a longer interval. This undocumented feature of
the routers, generally seems to arise as combination of the
timeout values and existing network load. Such combination
of intervals do not appear to be deterministic either. It gener-
ally seems difficult to divide such large interval into smaller
intervals, especially when we have no way to determine the
ordinate values for each of the new intervals.

We thus devised a method to approximate the flow records
for different time intervals for the server to exit node and entry
to client traffic.

a) Time aligning flow data:: Before describing how
we aligned the flow data, let us describe the problem in more
detail. Let us suppose that the entry node to client data is
quantized into intervals as follows:

tx1
– tx2

Bytesx1

tx3
– tx4

Bytesx2

tx5
– tx6

Bytesx3

5

Here, the start and end times are shown as txi
– txj

,
where txi

and txj
represent the flow start and end time points.

Bytesxi
represents the data transferred during that interval.

Similarly, assume the server to exit node traffic is also
quantized into the following intervals :

ty1 – ty2 Bytesy1

ty3 – ty4 Bytesy2

ty5 – ty6 Bytesy3

ty7 – ty8 Bytesy4

ty9
– ty9

Bytesy5

We assume that the start and end times of both the sets
of intervals are not aligned. Thus, tx1

6= ty1
and tx2

6= ty2
.

Let us assume this to be the cases for all the intervals (the
worst scenario). However, we also assume that both interval
sets (namely the flows corresponding to the traffic between the
server and exit node and between the entry node and possible
clients) fall within some overall experiment start and end times.

We first convert the data in the intervals to a different scale.
We convert the data in bytes transferred for the interval to the
average traffic throughput, in terms of bytes transferred per
second. For example, for the interval tx1 – tx2 we compute
average throughput as (

Bytesx1

tx2
−tx1

). Let us denote this average
throughput to be Rx1 . Thus, let us denote the throughput for
each of the intervals for the entry node to clients as Rxi ,
∀ i ∈ {1, 2, 3} (corresponding to all the intervals). Also,
let us also compute the throughput values for each of the
intervals corresponding to the server to exit traffic and denote
them by Ryj

, ∀ j ∈ {1, 2, 3, 4, 5}. Each of the throughput
values represent the average throughput value for intervals.
This effectively translates to number of bytes transferred at
each second corresponding of the interval. Let us explain this
through an example. Suppose for the interval ty1 – ty2 , the
average throughput is Ry1 , then it means that at ty1 seconds,
Ry1 bytes were transferred. Similarly, at each of ty1 + 1
seconds, ty1

+ 2 seconds et. Ry1
bytes were transferred.

Thereafter, we divide the intervals smaller as follows:

• Determine which of the two interval sets (namely that
corresponding to the traffic between the server and
exit, and between the entry node and the client) has
more intervals values. Let us denote this set by Y . Let
us denote the smaller set by X (|Y | ≥ |X|).

• Divide the larger set (Y) into steps of one second.
For example, if we have an interval ty1

– ty2
with

throughput of Ry1
, we divide the interval into points

that are one second apart. Thus, the points are ty1
,

ty1
+1, ty1

+2, ..., ty1
+ (n− 1),ty2

. The throughput
at each of these points is equal to Ry1

. Thus we have
the following throughput values (for the interval ty1

– ty2):
ty1 : Ry1

ty1+1 : Ry1

ty1+2 : Ry1

...
ty1

+ (n− 1) : Ry1

ty2
: Ry1

• Divide the smaller set (X) into steps of only two
interval points, namely the start and the end times.
For example, the interval tx1

– tx2
, is to be divided

only into two points, namely . tx1 and tx2 and the
throughput at each would be Rx1 calculated using the
formula mentioned above.

Having divided the intervals, we select the set X , that
denotes the set of intervals with lesser number of points. For
each point in X , say txi

(∀i ∈ |X|), we try to find the point
in Y corresponding to the same time, say tyj

(∃j ∈ |Y |, tyj
=

txi
). These two points, namely txi

and tyj
, along with their

respective bandwidth values are output to two separate files.
This process is repeated for all points in X . At the end of
this process we have two different files which are organized
as times and corresponding throughput values. The timestamps
in these two files are same. The throughput values correspond
to an estimated average throughput for each of those points.
We compute the correlation of the throughput values in these
two files. This gives us an approximated correlation for the
traffic from server to exit node and from entry node to the
client, even when the original flow samples are spare or not
aligned with each other.

Thus, to summarize, the attack proceeds through the fol-
lowing steps:

1) Client downloads a file from the server that colludes
with the adversary.

2) While the download progresses, the server injects a
repeating traffic pattern in the TCP connection it sees
originating from the exit node.

3) After sometime the download process is stopped and
the server halts the traffic shaping procedure.

4) The adversary obtains network statistics from flow
records corresponding to the server to exit traffic and
for the various clients that used the victim entry node
for the duration of the attack experiment.

5) If the flows are not correctly aligned, equally long
and evenly separated, then the adversary applies the
approximation strategy to correctly align them.

6) The adversary thereafter computes correlation coef-
ficient for the server to exit traffic network statistics
and for all the individual clients that used the victim
entry node during the attack experiment.

7) The victim client’s statistics is expected to be most
correlated to the server to exit node traffic. Thus the
client, whose traffic statistics are most correlated to
the exit node traffic are chosen as the victim and
verified.

Figure 2 pictorially presents this overall attack procedure.

IV. EXPERIMENTAL EVALUATION

We evaluated our traffic analysis method first using and in-
lab test-bed and later through experiments involving data from
a public Tor relay. The former experiments we conducted to
evaluate the accuracy of our correlation based traffic analysis
method in an in-lab set-up in the absence of Internet traffic
congestion and related network and system artefacts. Our
traffic analysis attack detected the victim client in all cases.
Thereafter, we evaluated the effectiveness of our attack through

6

Entry

Middleman

Exit

Victim
Client

Colluding
Server

Computing
Correlation

Coefficient (r)

Tor Network

N
e

tf
lo

w
 D

at
a

N
e

tf
lo

w
 D

at
a

Injected
Traffic
Pattern 2

2 2

1

1

1

1

3

4

3

Injected
Traffic Pattern Travels
Through the Victim Circuit

Injected
Traffic
Pattern

Non-Victim
Client

Non-Victim
Client

Fig. 2. Overall Process for NetFlow Based Traffic Analysis Against Tor
The client downloads a file from the server 1©, while the server injects a
traffic pattern into the TCP connection it sees arising from the exit node 2©.
After a while, the connection is terminated and the adversary obtains flow
data corresponding to the server to exit and entry node to client traffic 3©,
and computes the correlation coefficient between the server to exit traffic and
entry to client statistics 4©.

experiments that involved data obtained from a public Tor
relay. These experiments involved both dense and sparse data
and various effects of network congestion and path character-
istics. Even under such conditions, we were able to identify
the victim client in about 83% of the experiments (with about
5% false positives).

A. Experimental Evaluation in Controlled Environments (Us-
ing In-Lab Test-bed)

The first in-lab experiment consisted of evaluating the
effectiveness of our traffic analysis attack in an in-lab set-
up with a private Tor network. The set-up used is shown in
Figure 3.

Server
Modulating
the Victim’s
Traffic
Throughput

TLS Tunnels
Between Relays

Tor Clients

Victim Client

Non-Victim
 Client

Non-Victim
Client

Non-Victim
Client

Non-Victim
 Client

Private Tor
Network

Entry
Node

Middleman 2

Middleman 1

Exit
Node

Computing
Correlation

Coefficient (r)

N
e

tf
lo

w
 D

at
a

N
e

tf
lo

w
 D

at
a

Fig. 3. In-lab test-bed used to evaluate effectiveness of NetFlow traffic
analysis method.

In this set-up thirty clients simultaneously communicated
to the server through circuits using the relays of the private
Tor network. In reality, these clients were actually hosted on
two PCs. Each PC hosted fifteen clients. The clients were
connected on the same LAN using a 10/100 Mbit/s Ethernet
switch (all the client IP addresses were in the same subnet).
The individual network connections of the middlemen were on
different subnets (corresponding to the incoming and outgoing
network connections). The outgoing network connections of
the middlemen were connected to two different interfaces
of the exit node which connected to the server through a
separate network interface, on yet another different LAN (on
yet another separate subnet). Fifteen of these clients used the
circuits involving the entry node, the middleman 1 and the exit
node and communicated to the server. The remaining fifteen
used circuits via middleman 2 (instead of middleman 1) to
communicate to the server.

We restricted the number of clients to 30. From our initial
experience with this set-up we realized, that when using Tor
circuits, due to the packetization and Tor’s traffic scheduling,
each client obtained roughly 2.5 Mbit/s throughput. This
number seemed adequate to test the effectiveness of attacks
in an in-lab set-up in the absence of any kind of external
network and system disturbances while at the same time cause
the server to inject complex traffic pattern.

These clients downloaded large files from the server, which
selected one of the clients and perturbed its traffic thereby
injecting a traffic pattern. Our experiments were conducted
with the server injecting two kinds of patterns. The first was
a “square-wave” like pattern with amplitude of 1 Mbit/s.
The server achieved this by repeatedly switching the victim’s
traffic between 2 Mbit/s and 1 Mbit/s, every 10 seconds.
The second involved the server inject a complex pattern by
switching the exit node to server TCP connection throughput
through 2 Mbit/s, 1 Mbit/s, 256 Kbit/s, 512 Kbit/s and then
again going back to 2 Mbit/s, every 10 seconds. A sample
plot, corresponding to the server to exit, entry to victim and
non-victim clients’ throughput pattern, derived from NetFlow
records is shown in Figure 4. The complex pattern is evident
from the figure. The server switches the traffic throughput
through the said values. This pattern is closely seen by the.
Since all the non-victims were using the same entry and
exit nodes, they were affected by the same traffic schedules.
Since all the circuits are involved in bulk download, they are
scheduled with similar priority [38]. Their traffic throughput
patterns, being closely synchronized, highlights this fact.

These experiments were also repeated 60 times, 30 times
corresponding to the scenario where the server injected the
“square-wave” pattern and the 30 times corresponding to to
“step” like pattern. The experiments ran for 400 seconds. In
case of “square-wave” like pattern, we observed very high
correlation between the server to exit and entry node to victim
client traffic (µ:0.80 , σ:0.08) and much lower correlation
corresponding to non-victim clients (µ:0.06,σ:0.16). Similarly
for the “step” like pattern, we observed a very high correlation
corresponding to the server to exit node and entry node to
client traffic (µ:0.92 , σ:0.06) and much lower correlation
corresponding to non-victim clients (µ:0.07,σ:0.14).

We continued to observe high correlation between the
server to exit traffic and entry node to victim client traffic

7

 0

 1

 2

 3

 4

 5

 6

37:00 38:00 39:00 40:00 41:00 42:00 43:00

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (MM:SS)

Victim Traffic
Entry to Client1 Carrying Victim Traffic

Fig. 4. Server induced “step” like pattern exactly matches the flow going
towards the victim client. The points corresponding to the flows are highlighted
by connecting the sample points. The remaining points correspond to 29 other
non-victim flows.

statistics (µ:0.90,σ:0.06) even when the experiment lasted for
a shorter duration of 200 seconds.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Square-Wave
Pattern

Complex
Pattern

C
or

re
la

tio
n

Injected patterns: ’Square-Wave’ pattern of amp. 1 Mbit/s
 and ’Complex’ pattern: 2 Mbit/s->1Mbit/s

->256 Kbit/s->512 Kbit/s

Correlation for Victim
Correlation for Non-Victim

Fig. 5. Average correlation for the server induced traffic pattern and the entry
to victim client traffic and the max. correlation between the server induced
traffic and non-victim clients, when the server injected “square-wave” and
“step” like pattern (number of clients:30).

B. Experimental Evaluation Involving Public Tor Relays

Having evaluated the accuracy of our traffic analysis attack
in an in-lab environment we moved to evaluating it using real
Tor traffic, obtained from our public Tor relay that served
hundreds of Tor circuits simultaneously. The set-up used is
as same as the one shown in Figure 2. The victim clients
were hosted on three different planetlab locations, namely,
Texas (US), Leuven (Belgium) and Corfu (Greece). They
communicated, via Tor circuits through our relay, to a server

under our control, in Spain. The victim clients downloaded
a large file from the server that perturbed the arriving TCP
connection’s traffic, thereby deliberately injecting a traffic
pattern in the flow between the server and the exit node. The
process was terminated after a short while and we computed
the correlation between the bytes transferred between the
server and the recently terminated connection from the exit
node and the entry node and the several clients that used it,
during this interval.

These experiments were divided into two parts. The first
consisted of evaluating the effectiveness when gathering data
from open-source NetFlow packages. The second part involved
sparse data obtained from our institutional Cisco router.

1) Using Open Source NetFlow Tools: The first experiment
involved the server injecting a “square-wave” like traffic pat-
tern by freely switching the server to exit traffic bandwidth
between approximately 2 Mbit/s and 30 Kbit/s, thereby in-
jecting a traffic pattern with amplitude of roughly 2 Mbit/s.
We used the set-up shown in Figure 2. The data was gathered
from the server and from the entry node, using open source
NetFlow packages. Each such experiment, involving the server
switching between these bandwidth values, lasted for about 6
minutes and 40 seconds. Figure 6(a) presents sample traffic
throughput variations for five flows, corresponding to one such
experiment. These five flows are most correlated to the server
to exit victim flow carrying the injected traffic pattern. The
victim flow had the highest correlation coefficient of of 0.83,
while the one with second-highest correlation, corresponding
to a non-victim client, was 0.17. A total of 1104 client were
using the entry node at the time of the experiment.

The figure also shows the fluctuating “square-wave” traffic
pattern with an amplitude of approximately 2 Mbit/s. The
trough of the “square-wave” is chosen to be at 30 Kbit/s so as
to sustain the Tor circuit, between the entry node and victim-
client, for the duration of the experiment. Tor clients generally
terminate circuits inactive circuits (which haven’t seen any
activity) within about 10 minutes. We computed the correlation
coefficient for the bytes transferred between the server and
the exit node and each of the entry node to client flows,
corresponding to the duration of the experiment. Thereafter,
the client that was most correlated to the server to exit traffic
was selected as the victim.

These experiments were repeated 45 times (15 times cor-
responding to each victim client location). Average correlation
between the server to exit traffic and entry node to client traffic
was 0.60 (σ:0.26), 0.43 (σ:0.13) and 0.35 (σ:0.14) for each of
the clients at Texas (US), Leuven(Belgium) and Corfu(Greece)
respectively (see Figure 6(b)). These corresponded to the client
flows that were most correlated to the server to exit flow
carrying the traffic pattern. The average of second-highest
correlation coefficients, corresponding to non-victims, were
0.38 (σ:0.02), 0.30 (σ:0.14) and 0.18 (σ:0.15), respectively
for each of the clients for the three sets of experiments
(corresponding to each of the victim client location).

Similar experiments were also repeated with the server
injecting a “step” like pattern. To achieve this, the server
switched the server to exit traffic between roughly 1 Mbit/s,
50 Kbit/s, 300 Kbit/s and 100 Kbit/s, every 20 seconds. This
pattern was again repeated several times. Figure 7(a) shows

8

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

38:00 39:00 40:00 41:00 42:00 43:00

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (MM:SS)

Victim Traffic - Server to Exit Node
Entry to Client 974 (Victim)

Entry to Client 995
Entry to Client 677
Entry to Client 895
Entry to Client 255

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

Location 1
(Texas,

US)

Location 2
(Leuven,
Belgium)

Location 3
(Corfu,

Greece)

C
or

re
la

tio
n

Injected pattern: ’Square-Wave’ pattern with amp.2 Mbit/s

Correlation for Victim
Correlation for Non-Victim

(b)

Fig. 6. (a) Server induced “square-wave” like pattern exactly matches the flow going towards the victim client974 (location : Texas, US), having the highest
correlation. The remaining points correspond to the other non-victim flows that whose correlation coefficients are amongst the five highest. (b) Average Pearson’s
Correlation between server injected “square-wave” like pattern and victim and non-victim flows corresponding to the different planetlab client locations.

one such sample where the server injected the “step” like
pattern. In this experiment, the victim flow had the highest
correlation coefficient of of 0.84, while the one with second-
highest correlation, corresponding to a non-victim client, was
0.25. A total of 874 clients were using the entry node at the
time of the experiment. These experiments were repeated 45
times (15 times corresponding to each client location). Average
correlation between the server to exit traffic and entry node to
client traffic was 0.55 (σ:0.21), 0.31 (σ:0.15) and 0.32 (σ:0.12)
for each of the clients at Texas (US), Leuven(Belgium) and
Corfu(Greece) respectively (see Figure 7(b)). These also corre-
sponded to the flows having the highest correlation coefficients.
The average of second-highest correlation coefficients, corre-
sponding to non-victims, were 0.19 (σ:0.08), 0.07 (σ:0.12) and
0.18 (σ:0.10), respectively for each of the clients for the three
sets of experiments (corresponding to each of the victim client
location).

We gathered a total of thirty measurements corresponding
to each victim client. This included 15 measurements corre-
sponding to both “square-wave” and “complex” patterns. This
resulted in a total of 90 measurements. In most cases, we
observed a clear separation between the correlation of the
server to exit node traffic (carrying the induced traffic pattern)
and the entry node to victim client traffic and that measured
between the former and non-victim traffic. However, the aver-
age correlation of the injected pattern for the victim traffic was
lower than what we observed in case of in-lab controlled test-
bed. This is because traffic fingerprinting pattern is distored
when it leaves the Tor entry node and proceeds towards the
victim client, thereby reducing the correlation of the injected
traffic pattern with the entry node to victim client traffic.
Further, we also found four instances where the correlation
of the injected traffic with the victim traffic (from the entry
node to the victim client) was lower than the correlation with
some other non-victim clients’ traffic. Such false negatives
and false positives are primarily a combined effect of the

background network congestion and routing in Tor relays,
wherein the available bandwidth is distributed equally amongst
all circuits, while at the same prioritizing interactive circuits
over non-interactive ones [38]. Moreover, Pearson’s correlation
coefficient is known to be very sensitive to minor changes in
input values. Small changes to input can drastically change the
value of correlation coefficient.

For each of the clients, we also computed the average
bandwidth variation of the traffic for the duration of the
experiment. Each of these average bandwidth values were
subtracted from the average bandwidth variation of the server
to exit traffic. For the victim traffic, this difference is often
amongst the smallest. Thus, while correlation is sensitive to
small variations in input, such an approach of calculating
the difference between the victim traffic and server to exit
traffic, carrying the induced pattern, can be used to filter
out flows that could lead to inaccurate correlation values
arising out of lack of adequate values. In fact, in the next
subsection we show how this heuristic could be used to filter
out flows which can possibly result in inaccurate correlation
between server to exit victim traffic and entry node to client
traffic flows, when obtained from our institutional Cisco router.
The records gathered from the Cisco router were sparse and
resulted in inaccurate correlation coefficient computation. We
used the above observation to filter out flows which are very
unlikely to be the victim flow. The victim to entry traffic is
expected to ideally have an average bandwidth variation (for
the duration of the experiment), as close as possible to that of
the server to exit node traffic. After filtering out the flows, we
applied our approximation technique (described previously) to
align corrected flow information and compute the correlation
coefficient. We pick out the one which shows highest (and
statistically significant, i.e. ≥ 0.2) correlation amongst this
filtered set.

9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

31:0032:0033:0034:00 35:0036:0037:00 38:0039:0040:0041:00 42:00

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (MM:SS)

Victim Traffic
Entry to Client 122(Victim Client)

Entry to Client 93
Entry to Client 264
Entry to Client 246
Entry to Client 72

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

Location 1
(Texas,

US)

Location 2
(Leuven,
Belgium)

Location 3
(Corfu,

Greece)

C
or

re
la

tio
n

Injected pattern: ’Step’ pattern: 1 Mbit/s->50 Kbit/s->300 Kbit/s->
100 Kbit/s (switched every 20 seconds)

Correlation for Victim
Correlation for Non-Victim

(b)

Fig. 7. (a) Server induced “step” like pattern exactly matches the flow going towards the victim client122 (location : Corfu, Greece), having the highest
correlation. The remaining points correspond to the other non-victim flows that whose correlation coefficients are amongst the five highest. (b) Average Pearson’s
Correlation between server injected “step” like pattern and victim and non-victim flows corresponding to the different planetlab client locations.

2) Using data from Cisco router: After evaluating our
traffic analysis attack with data from open source NetFlow
packages, we moved to evaluating it with data from our
institutional edge router. We used the same experimental set-
up as that used above to test our attack using data obtained
from open source packages. The differences here were that the
entry node to client data was gathered from the router instead
of directly collecting it from the entry node. The router was
configured with an active timeout of 60 seconds and inactive
timeout 15 seconds. We had no authority to modify these
values as the router served large fraction of our institutional
network traffic (several tens of thousands of competing flows
at any given point of time). We thus configured the NetFlow
packages on the server with these values. As already described
in the previous section, the data obtained from the router
seemed much sparse and non-uniformly aligned compared to
the flow records from server to exit node. We thus applied our
approximation strategy (described in the previous section) to
align the flows. The strategy primarily operates by interpolat-
ing approximate bandwidth values. The rectified flow values
were then directly used as input to the correlation coefficient
computation formula and the correlation coefficients between
the server to exit traffic and entry node to client traffic were
determined.

These experiments were essentially the same as those
described in the previous subsection. The first experiment in-
volved the server injecting a “square-wave” like traffic pattern
with an amplitude of approximately 1 Mbit/s. However, unlike
the experiments in the previous subsection, the server switched
the throughput every 30 seconds, instead of 20 seconds. This
enabled us to capture adequate (≥ 10) samples for computing
the correlation coefficient. This was done solely to compensate
for the lack of samples obtained when the experiments ran for
a shorter duration of 20 seconds (as previously). For example,
when injecting the “square-wave” like pattern, if the server
switched the server to exit bandwidth every 20 seconds, and

if this was repeated 10 times, then the total experiment ran
for about 7 minutes and we observed on an average only
three sample intervals corresponding to the entry node to
client traffic. Figure 8(a) presents a sample bandwidth variation
pattern for the server to exit traffic and the entry node to client
traffic when the server injects the “square-wave” pattern with
an approximate amplitude of about 1 Mbit/s. It shows server
to exit traffic with more data points and fewer entry to client
points. Figure 8(b) presents the same data pattern after it has
been rectified using our approximation strategy. As evident,
here the server to exit traffic and entry to client traffic to have
equal number of points.

As mentioned in the previous subsection, eliminated flows
whose average throughput variation was not comparable to that
of the server to exit traffic throughput variation. To do this,
we computed the difference of the average traffic throughput
variation of the server to exit flow and the average traffic
throughput variation of the entry node to client traffic (for all
the clients). From our experience, we saw that for the victim
traffic, the difference of the averages is within 120 Kbit/s.
We used this as a threshold to eliminate flows whose average
throughput, for the duration of the experiment, differed from
the average throughput of the server to exit traffic by more
than 120 Kbit/s.

Just as described in the previous subsection, these experi-
ments were repeated 45 times (15 times corresponding to each
client location). Average correlation between the server to exit
traffic and entry node to victim client traffic was 0.57 (σ:0.22),
0.35 (σ:0.45) and 0.55 (σ:0.17) for each of the clients at Texas
(US), Leuven(Belgium) and Corfu(Greece) respectively (see
Figure 9(a)). These averages were calculated from the flows
having the highest correlation coefficients. The average of
second-highest correlation coefficients, corresponding to non-
victims, were 0.005 (σ:0.30), 0.26 (σ:0.36) and 0.24 (σ:0.17),
respectively for each of the clients for the three sets of

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

28:00 30:00 32:00 34:00 36:00 38:00 40:00 42:00 44:00

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (MM:SS)

Victim Traffic
Entry to Client 101 (Victim)

Entry to Client 63
Entry to Client 441
Entry to Client 292
Entry to Client 59

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

28:00 30:00 32:00 34:00 36:00 38:00 40:00 42:00 44:00

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Time (MM:SS)

Victim Traffic
Entry to Client 101 (Victim)

Entry to Client 63
Entry to Client 441
Entry to Client 292
Entry to Client 59

(b)

Fig. 8. (a) Server induced “square-wave” pattern of amplitude 1 Mbit/s along with other non-victim flows from the Entry node to victim and non-victim hosts
having the five highest correlation co-efficient. Victim location : Texas, US. (b) Flows in Figure 8(a) adjusted and corrected using our approximation strategy.

experiments.

These experiments were repeated with the server injecting a
“step” like pattern, by switching the traffic through 1 Mbit/s, 50
Kbit/s, 300 Kbit/s and 100 Kbit/s, every 30 seconds. Average
correlation between the server to exit traffic and entry node to
client traffic was 0.31 (σ:0.30), 0.31 (σ:0.23) and 0.42 (σ:0.15)
for each of the clients at Texas (US), Leuven(Belgium) and
Corfu(Greece) respectively (see Figure 9(b)). The second-
highest correlation coefficients, corresponding to non-victims,
were -0.04 (σ:0.24), 0.14 (σ:0.29) and 0.10 (σ:0.30), respec-
tively for each of the clients for the three sets of experiments
(corresponding to each of the victim client location).

Overall we gathered a total of 90 measurement (thirty
measurements for each of the planetlab client locations) and
in 71 of those we were able to correctly identify the victim
flow (success rate of 80%). In 13 of the remaining cases we
were not able to correctly select the victim because either the
correlation coefficient was statistically not significant enough
(< 0.2) or the victim flow was filtered out because the average
throughput differed from the average server to exit throughput
by more than 120 Kbit/s.

There were six false positives in our measurements, where
non-victim clients showed highest correlation amongst the
filtered set, whose average throughput was close to the av-
erage throughput of the server to exit traffic. Upon closer
examination we found one instance where the there were only
10 sample intervals corresponding to the server to exit traffic
while there were about 36 sample intervals corresponding to
the server to exit flow. Amongst the remaining five cases there
were three situations where the number of sample intervals
for the entry node to client was less than half the number
of sample intervals corresponding to the server to exit traffic.
These fewer sample intervals lead to loss of information and
resulted in correlation representing an inaccurate relationship.

a) Monitoring multiple Tor relays: After testing the
attack effectiveness in scenarios involving monitoring a single
Tor relay, we emulated a scenario involving two relays. Instead
of running a single Tor relay, we started a second one, within
our institution. The purpose of this second Tor relay was to
see how effective our attack was when the adversary had to
monitor more clients. In the previous scenario the adversary
was monitoring a single Tor relay, which on an average served
about 900 clients. Upon adding the extra relay, we were able
to attract about an additional 600 clients.

We repeated some of the experiments we performed with
the single Tor relay scenario. The only difference here was
that we performed correlation between the traffic statistics
for server to exit flow and for flow corresponding to all the
clients which were using the two relays. In our experiments the
server injected the complex “step” like pattern by switching the
server to exit traffic between roughly 1 Mbit/s, 50 Kbit/s, 300
Kbit/s and 100 Kbit/s, every 30 seconds. These experiments
were repeated 24 times, 8 times corresponding to each of the
victim client locations. Average correlation between the server
to exit traffic and entry node to client traffic was 0.43 (σ:0.06),
0.54 (σ:0.18) and 0.35 (σ:0.05) for each of the clients at
Texas (US), Leuven(Belgium) and Corfu(Greece) respectively
(see Figure IV-B2a). The second-highest correlation coeffi-
cients, corresponding to non-victims, were 0.07 (σ:0.23), 0.13
(σ:0.25) and 0.23 (σ:0.02), respectively for each of the clients
for the three sets of experiments.

In our measurements, we were able to correctly identify
the victim client in 14 cases. There were three false positives,
where the correlation of the server to exit traffic was higher for
a non-victim than for the victim. The remaining seven were
false negatives, where the correlation for the victim traffic was
not significant (≤ 0.2). These false positives were mostly due
to the reasons discussed previously. Small distortion in input
traffic resulted in significant changes to Pearson’s correlation.
The correlation coefficient thus didn’t correctly reflect the

11

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

Location 1
(Texas,

US)

Location 2
(Leuven,
Belgium)

Location 3
(Corfu,

Greece)

C
or

re
la

tio
n

Injected pattern: ’Square-Wave’ pattern with amp.1 Mbit/s

Correlation for Victim
Correlation for Non-Victim

(a)

-0.2

 0

 0.2

 0.4

 0.6

Location 1
(Texas,

US)

Location 2
(Leuven,
Belgium)

Location 3
(Corfu,

Greece)

C
or

re
la

tio
n

Injected pattern: ’Step’ pattern: 1 Mbit/s->50 Kbit/s->300 Kbit/s->
100 Kbit/s (switched every 30 seconds)

Correlation for Victim
Correlation for Non-Victim

(b)

Fig. 9. (a)Average Pearson’s Correlation between server injected “square-wave” like pattern of amplitude 1 Mbit/s and victim and non-victim flows, corresponding
to the different planetlab client locations. The entry node to client traffic data is captured using NetFlow data derived from institutional Cisco router with NetFlow
capability. (b) Average Pearson’s Correlation between server injected “step” like pattern and victim and non-victim flows, corresponding to the different planetlab
client locations. The entry node to client traffic data is captured using NetFlow data derived from institutional Cisco router with NetFlow capability.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

Location 1
(Texas,

US)

Location 2
(Leuven,
Belgium)

Location 3
(Corfu,

Greece)

C
or

re
la

tio
n

Injected pattern: ’Step’ pattern: 1 Mbit/s->50 Kbit/s->300 Kbit/s->
100 Kbit/s (switched every 30 seconds)

Correlation for Victim
Correlation for Non-Victim

Fig. 10. Average Pearson’s Correlation between server injected “step”
like pattern and victim and non-victim flows, corresponding to the different
planetlab client locations. The entry node to client traffic data is captured using
NetFlow data derived from institutional Cisco router with NetFlow capability.

relationship between the server to exit traffic and then entry
node to victim client traffic.

This scenario, involving multiple relays, provides us with
an intuition of what one can expect when an adversary mon-
itors multiple relays. However, as mentioned in Section I, an
adversary need not compare the server to exit flows to flows
from all the entry nodes that it monitors. He (or she) could
use traffic analysis methods, such as [16]–[18] to determine the
actual entry node that is being used in the victim connection,
thereby only using flow statistics corresponding to the victim

entry node.

V. DISCUSSIONS AND FUTURE WORK

Our traffic analysis attack works well in a controlled in-
lab set-up with symmetric network paths and path capacities
(and other properties) and least congestion and uncontrolled
disturbances. In such an enviromnent we were always able to
determine the identity of the anonymous client amidst, several
others clients that were communicating with the server. We
observed sharp contrast between the correlation of the server
to exit traffic with that of the entry node to victim client
and the correlation of the server to exit node traffic with
entry node to non-victim clients’ traffic. This enabled easy
detection of the victim traffic. This is evident from the results
presented in the previous section. However, on moving to tests
with real Tor relays, we didn’t see such high correlation for
server to exit traffic and entry node to client traffic. This is
because of existing path congestion and the traffic scheduling
by Tor relays which distort the injected traffic pattern. The
decrease in correlation is attributed to this distortion in injected
pattern, thereby leading information loss. In our experiments
involving gathering of data from the institutional Cisco router,
such effects were quite pronounced. Moreover, the number
of sample intervals were lesser, compared to data obtained
from Linux Netflow packages. This was primarily due to flow
aggregation arising from existing load on the routers. This
undocumented feature leads to to flow records that often have
unequal lengths and are not evenly spaced. To compensate for
such situations, we devised our approximation strategy that
align server to exit and entry to client flow records and use
their statistics as input to compute correlation coefficient. Such
approximations can cause decrease in the overall correlation
of the server to exit traffic with the entry node to victim
traffic, since the process crops out data points from the flows
that cannot be aligned to any corresponding data point in

12

flows that the former are being compared to. This reduces the
number of input points for correlation coefficient computation,
resulting in a coefficient that doesn’t accurately represent the
variation of the server to exit traffic and entry node to client
traffic. Even though the number of input samples would be
more than 10, often considered a minimum required number
of samples to use correlation to demonstrate similarity in
variation of the input samples, the approximation strategy
could still reduce the information, which would otherwise be
essential to correctly demonstrate the similarity (or the lack
of it) in flow statistics. For example, on closer examination of
the false positives, we found out that the false positive were
indeed due of extreme lack of sample intervals, for the data
captured between the entry node and the victim client (often
much lower than the half the number of sample intervals for
the data between the server and the exit node), even when they
might be considered adequate enough to be used in correlation
coefficient computation.

Our future work includes implementing and testing various
mechanisms to defend against such traffic analysis attacks. The
various possible avenues of defense which we plan study are
as follows:

• Dummy traffic (padding): Using dummy traffic (also
called padding) to hide patterns in correlated traf-
fic flows has been proposed in the past [39]–[41],
but has never been implemented due to the possible
performance degradation. We plan to implement a
conservative dummy traffic sending mechanisms such
as [42], [43] or schemes whereby there is least effect
of performance, while at the same time the injected
patterns are not revealed through correlation.

• Using built-in traffic shaping parameters: Tor
has built-in traffic shaping parameters, directed
towards performance. These parameters, viz.
’BandwidthRate’, ’BandwidthBurst’,
’PerConnBWRate’ and ’PerConnBWBurst’
were designed so as to apply various traffic shaping
and throttling schemes to the traffic. However, such
traffic shaping schemes could have the potential to
distort injected traffic patterns. We plan to study
the effect of variation of these parameters on the
observed correlation between flows.

VI. CONCLUSIONS

We have presented a practical traffic analysis attack against
Tor, the most popular low latency anonymity preserving
system, that relies on using data from existing monitoring
framework, already installed in network devices. In particular
we have demonstrated the practical feasibility of carrying out
traffic analysis attack using statistical correlation on network
traffic statistics obtained from Netflow, a popular network
monitoring framework installed in various router platforms.
We have demonstrated the feasibility of launching such attack
to determine source of anonymous traffic. The idea of using
Netflow data to de-anonymize traffic was proposed earlier [13].
However, there the authors presented a theoretical model to
study the attack that relied on simulation results. The focus
had been whether there were a small number of Internet
Exchanged (IXes) from which such attack could be launched.

We do not focus on finding approprite vantage points and
monitoring hosts, but rather on the logical “next-step” once
such routers have been determined. We focus on studying how
successful such an attack is in practice to identify the source of
anonymous traffic. We rely on correlation of traffic statistics to
identify the source of anonymous traffic amidst various flows
corresponding to clients using our entry node. Our research,
demonstrates such an attack first on an in-lab set-up involving
a private Tor network and client which we controlled. In
such an environment, free from external network congestion
and various artefacts due to link characteristics and path
asymmetricities, we were able to determine the actual source
of anonymous traffic with 100% accuracy. In experiments that
involved data from public Tor relays, using both open source
Netflow emulation packages and our institutional Cisco router
that monitored traffic using Netflow framework, we were able
to correctly identify the source of anonymous traffic in about
81.4% of our experiments, with about 6.4% false positives.

REFERENCES

[1] “JAP.” [Online]. Available: http://anon.inf.tu-dresden.de/
[2] “I2P Anonymous Network,” http://www.i2p2.de/.
[3] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-

Generation Onion Router,” in Proceedings of the 13th USENIX Security
Symposium), August 2004, pp. 303–319.

[4] J.-F. Raymond, “Traffic Analysis: Protocols, Attacks, Design Issues,
and Open Problems,” in Proceedings of Designing Privacy Enhancing
Technologies: Workshop on Design Issues in Anonymity and Unobserv-
ability. Springer-Verlag, LNCS 2009, July 2000, pp. 10–29.

[5] M. K. Wright, M. Adler, B. N. Levine, and C. Shields, “An analysis of
the degradation of anonymous protocols,” in Proceedings of the Network
and Distributed Security Symposium (NDSS), 2002.

[6] S. J. Murdoch and G. Danezis, “Low-Cost Traffic Analysis of Tor,” in
Proceedings of IEEE Symposium on Security and Privacy, May 2005,
pp. 183–195.

[7] N. Hopper, E. Y. Vasserman, and E. Chan-Tin, “How Much Anonymity
does Network Latency Leak?” in Proceedings of ACM Conference on
Computer and Communications Security (CCS), October 2007, pp. 82–
91.

[8] N. Evans, R. Dingledine, and C. Grothoff, “A Practical Congestion
Attack on Tor Using Long Paths,” in Proceedings of the 18th USENIX
Security Symposium (USENIX Security), August 2009, pp. 33–50.

[9] S. Zander and S. Murdoch, “An Improved Clock-skew Measurement
Technique for Revealing Hidden Services,” in Proceedings of 17th

USENIX Security Symposium (USENIX Security), San Jose, USA, July
2008, pp. 211–225. [Online]. Available: http://www.usenix.org/events/
sec08/tech/zander.html

[10] V.Pappas, E.Athanasopoulos, S.Ioannidis, and E.P.Markatos, “Compro-
mising Anonymity Using Packet Spinning,” in Proceedings of the 11th

Information Security Conference (ISC), September 2008, pp. 161–174.
[11] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker, “Low-

resource routing attacks against tor,” in Proceedings of the 2007 ACM
Workshop on Privacy in Electronic Society (WPES), 2007, pp. 11–20.

[12] X.Fu and Z.Ling, “One cell is enough to break tor’s anonymity,” in
Proceedings of Black Hat Technical Security Conference, February
2009, pp. 578–589.

[13] S. J. Murdoch and P. Zieliński, “Sampled traffic analysis by internet-
exchange-level adversaries,” in In Privacy Enhancing Technologies
(PET), LNCS. Springer, 2007.

[14] N. Feamster and R. Dingledine, “Location Diversity in Anonymity
Networks,” in Proceedings of the ACM Workshop on Privacy in the
Electronic Society (WPES), October 2004, pp. 66–76.

[15] M. Edman and P. F. Syverson, “AS-awareness in Tor path selection,” in
Proceedings of the 2009 ACM Conference on Computer and Communi-
cations Security, CCS 2009, E. Al-Shaer, S. Jha, and A. D. Keromytis,
Eds. ACM, November 2009, pp. 380–389.

13

[16] S. Chakravarty, A. Stavrou, and A. D. Keromytis, “Traffic analysis
against low-latency anonymity networks using available bandwidth
estimation,” in Proceedings of the 15th European conference
on Research in computer security, ser. ESORICS’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 249–267. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1888881.1888901

[17] P. Mittal, A. Khurshid, J. Juen, M. Caesar, and N. Borisov,
“Stealthy traffic analysis of low-latency anonymous communication
using throughput fingerprinting,” in Proceedings of the 18th ACM
conference on Computer and communications security, ser. CCS ’11.
New York, NY, USA: ACM, 2011, pp. 215–226. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046732

[18] S. Chakravarty, A. Stavrou, and A. D. Keromytis, “Identifying Proxy
Nodes in a Tor Anonymization Circuit,” in Proceedings of the 2nd

Workshop on Security and Privacy in Telecommunications and Infor-
mation Systems (SePTIS), December 2008, pp. 633–639.

[19] “Netflow iptables module.” [Online]. Available: http://sourceforge.net/
projects/ipt-netflow/

[20] “Netflow iptables module.” [Online]. Available: http://freecode.com/
projects/flow-tools

[21] “Tor Metrics Portal.” [Online]. Available: http://metrics.torproject.org/

[22] “Tor Path Specification.” [Online]. Available: https://gitweb.torproject.
org/torspec.git?a=blob plain;hb=HEAD;f=path-spec.txt

[23] E. B. Claise, “Cisco systems netflow services export version 9,” http:
//www.ietf.org/rfc/rfc3954.txt.

[24] “J-Flow Statistics.” [Online]. Available: http://www.juniper.
net/techpubs/software/erx/junose82/swconfig-ip-services/html/
ip-jflow-stats-config.html

[25] “Huawei NetStream Analysis, Monitoring and Report-
ing.” [Online]. Available: http://www.solarwinds.com/solutions/
netstream-analyzer.aspx

[26] “InMon Corporation’s sFlow: A Method for Monitoring Traffic
in Switched and Routed Networks.” [Online]. Available: http:
//www.ietf.org/rfc/rfc3176.txt

[27] “NetFlow probes: fprobe and fprobe-ulog.” [Online]. Available:
http://fprobe.sourceforge.net/

[28] “Flexible NetFlow Command Reference.” [Online].
Available: http://www.cisco.com/en/US/docs/ios/fnetflow/command/
reference/fnf cr book.pdf

[29] V. Shmatikov and H. M. Wang, “Timing analysis in low-latency mix
networks: attacks and defenses,” in Proceedings of the 11th European
conference on Research in Computer Security, ser. ESORICS’06.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 18–33. [Online].
Available: http://dx.doi.org/10.1007/11863908 2

[30] S. J. Murdoch, “Hot or not: Revealing hidden services by their clock
skew,” in Proceedings of ACM Conference on Computer and Commu-
nications Security (CCS), October 2006, pp. 27–36.

[31] D. X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes
and timing attacks on ssh,” in Proceedings of the 10th conference on
USENIX Security Symposium - Volume 10, ser. SSYM’01. Berkeley,
CA, USA: USENIX Association, 2001, pp. 25–25. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251327.1251352

[32] E. W. Felten and M. A. Schneider, “Timing attacks on web
privacy,” in Proceedings of the 7th ACM conference on Computer
and communications security, ser. CCS ’00. New York, NY, USA:
ACM, 2000, pp. 25–32. [Online]. Available: http://doi.acm.org/10.
1145/352600.352606

[33] S. Chen, X. Wang, and S. Jajodia, “On the anonymity and
traceability of peer-to-peer voip calls,” Netwrk. Mag. of Global
Internetwkg., vol. 20, no. 5, pp. 32–37, Sep. 2006. [Online]. Available:
http://dx.doi.org/10.1109/MNET.2006.1705881

[34] X. Wang, S. Chen, and S. Jajodia, “Tracking anonymous peer-to-peer
voip calls on the internet,” in Proceedings of the 12th ACM
conference on Computer and communications security, ser. CCS ’05.
New York, NY, USA: ACM, 2005, pp. 81–91. [Online]. Available:
http://doi.acm.org/10.1145/1102120.1102133

[35] M. Schuchard, J. Geddes, C. Thompson, and N. Hopper, “Routing
around decoys,” in Proceedings of the 2012 ACM conference
on Computer and communications security, ser. CCS ’12. New

York, NY, USA: ACM, 2012, pp. 85–96. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382209

[36] D. Mccoy, K. Bauer, D. Grunwald, T. Kohno, and D. Sicker, “Shining
light in dark places: Understanding the tor network,” in Proceedings
of the 8th international symposium on Privacy Enhancing Technologies
(PETS), 2008, pp. 63–76.

[37] B. Hubert, T. Graf, G. Maxwell, R. Mook, M.Oosterhout, P.Schroeder,
J. Spaans, and P. Larroy, “Linux Advanced Routing and Traffic Control
HOWTO.” [Online]. Available: http://lartc.org/howto

[38] C. Tang and I. Goldberg, “An improved algorithm for Tor circuit
scheduling,” in Proceedings of the 2010 ACM Conference on Computer
and Communications Security (CCS 2010), A. D. Keromytis and
V. Shmatikov, Eds. ACM, October 2010.

[39] X. Fu, B. Graham, R. Bettati, and W. Zhao, “Analytical and empirical
analysis of countermeasures to traffic analysis attacks,” in Proceedings
of the 2003 International Conference on Parallel Processing, 2003, pp.
483–492.

[40] N. Mallesh and M. Wright, “Countering statistical disclosure with
receiver-bound cover traffic,” in Proceedings of 12th European Sympo-
sium On Research In Computer Security (ESORICS 2007), ser. Lecture
Notes in Computer Science, J. Biskup and J. Lopez, Eds., vol. 4734.
Springer, September 2007, pp. 547–562.

[41] O. Berthold and H. Langos, “Dummy traffic against long term inter-
section attacks,” in Proceedings of Privacy Enhancing Technologies
workshop (PET 2002), R. Dingledine and P. Syverson, Eds. Springer-
Verlag, LNCS 2482, April 2002.

[42] W. Wang, M. Motani, and V. Srinivasan, “Dependent link padding
algorithms for low latency anonymity systems,” in Proceedings of the
15th ACM Conference on Computer and Communications Security
(CCS 2008), P. Syverson, S. Jha, and X. Zhang, Eds. ACM Press,
October 2008, pp. 323–332.

[43] V. Shmatikov and M. H. Wang, “Timing analysis in low-latency mix
networks: Attacks and defenses,” in Proceedings of ESORICS 2006,
September 2006.

14

